본문 바로가기
2. 책 & 영화 리뷰

[도서] 기계는 어떻게 생각하는가? 알파고부터 자율 주행차까지!

by soosun 2021. 5. 11.

사실 별 생각없이 보기 시작했다.

내용은 프로그래밍 책과 일반책의 중간정도를 왔다 갔다 한다.

큰 기대를 하다가는 낭패,

어려운 설명을 너무 일반 글 처럼 하다가,

표지에서 주장하는 것처럼, 개발자가 아닌 사람에게 야간 도움이 될수도...

 

시작하기 - 생각하는 기계의 기원을 찾아서

01 자동인형의 비밀
플루트를 연주하는 자동인형 | 오늘날의 오토마타 | 진자 운동과 오토마타 | 이 책에서 다룰 오토마타 | 인공 지능과 기계 학습은 무엇인가?

첫째마당 자율 주행차와 인공 지능

02 자율 주행차의 시작 - DARPA 그랜드 챌린지
100만 달러가 걸린 사막의 무인 자동차 경주 대회 | 초기 자율 주행차는 어떻게 만들었을까? | 주행 경로 계획하기 | 험비의 계획 - 낮은 비용, 최단 경로를 찾아라! | 자율 주행차는 어떻게 달릴 수 있을까? | 험비의 고난에 찬 주행기 | DARPA 그랜드 챌린지는 과연 실패한 걸까?

03 자율 주행차는 차선을 어떻게 인지할까?
두 번째 DARPA 대회 - 그랜드 챌린지 | 자율 주행차에 적용한 기계 학습 | 자율 주행차 스탠리의 구조 | 장애물을 피하는 알고리즘 | 도로의 경계를 찾는 모듈 | 도로를 인식하는 방법 | 속도 조절을 위한 경로 계획 | 스탠리의 두뇌 각 부분은 서로 어떻게 소통할까?

04 자율 주행차는 교차로에서 어떻게 양보할까?
세 번째 DARPA 대회 - 어번 챌린지 | 인지의 추상화 | 한 차원 높아진 자율 주행차 경주 대회 | 보스를 생각하는 차로 만든 모노폴리 판 모듈 | 오류 회복 시스템으로 교통량 정보 얻기 | 3 레이어 구조 | 자율 주행차의 객체 분류 | 자율 주행차는 복잡한 시스템이다 | 자율 주행차는 앞으로 어떻게 발전할까?

둘째마당 넷플릭스 프라이즈와 인공 지능

05 넷플릭스 프라이즈 - 영화 추천 알고리즘 대회
100만 달러가 걸린 영화 추천 알고리즘 대회| 경쟁자들 | 분류기의 훈련 | 대회의 목표 | 거대한 평점 행렬 | 행렬 인수 분해 | 다가오는 첫해의 결말

06 협력하는 참가자들 - 넷플릭스 프라이즈의 우승자
참가자들의 격차가 좁혀지다 | 첫 번째 대회의 결과 | 시간에 따른 평점 예측 | 과적합 여부 판단하기 | 모델 블렌딩은 하나의 해결책 | 넷플릭스 프라이즈의 두 번째 해 | 넷플릭스 프라이즈의 마지막 해 | 대회 이후 넷플릭스가 얻은 것

셋째마당 강화 학습과 심층 신경망

07 보상을 통한 컴퓨터의 학습 - 강화 학습
딥 마인드, 아타리 게임을 하다 | 강화 학습 | 에이전트에게 명령하기 | 에이전트 프로그래밍하기 | 에이전트가 보는 세계 | 컴퓨터는 어떻게 경험을 저장할까? | 강화 학습으로 아타리 게임하기

08 신경망으로 아타리 게임을 정복하다
신경 정보 처리 시스템 | 완벽에 가깝게 | 수학 함수로서의 신경망 | 아타리 게임 에이전트 신경망의 구조 | 신경망에 더 깊게 들어가기

09 인공 신경망이 보는 세상
인공 지능에 대한 미신 | 체스 두는 오토마타 ― 터키인 | 신경망에 대한 오해 | 이미지에서 객체 인지하기 | 과적합 문제와 해결책 | 이미지넷 대회 | 합성곱 신경망 | 왜 심층 신경망인가? | 데이터 병목

10 심층 신경망의 내부 구조
컴퓨터가 생성한 이미지 | 스쿼싱 함수 | ReLU 활성화 함수 | 인조 인간의 꿈

넷째마당 세상과 소통하는 인공 지능

11 듣고 말하고 기억하는 신경망
기계가 ‘이해’한다는 것의 의미 | 음성 인식 심층 신경망 | 순환 신경망(RNN) | 이미지 설명글 생성기 | LSTM 유닛 | 적대적 데이터

12 자연어, 그리고 [제퍼디!] 문제의 이해
왓슨의 개발은 인공 지능 연구에 독인가, 득인가? | IBM 왓슨 | 왓슨, [제퍼디!]에 도전하다 | 사실에 대한 긴 목록 | [제퍼디!] 챌린지의 탄생 | DeepQA | 문제 분석 | 왓슨의 문장 해석 방법

13 [제퍼디!]의 답 마이닝하기
최저 기준 | 후보 생성 단계 | 답을 찾아서 | 가벼운 필터 | 증거 수집 단계 | 점수 계산 단계 | 집계와 순위 결정 | 왓슨 최적화하기 | DeepQA 다시 살펴보기 | 왓슨에게 지성이 있을까?

다섯째마당 게임과 인공 지능

14 무차별 탐색으로 좋은 전략 찾기
게임에서 이기는 수 탐색 | 스도쿠 | 트리의 크기 | 분기 계수 | 게임의 불확실성 | 클로드 섀넌 | 평가 함수 | 딥 블루 | IBM에 합류하다 | 탐색 그리고 신경망 | TD-GAMMON | 탐색의 한계

15 알파고는 어떻게 완성되었나?
컴퓨터 바둑 | 바둑의 규칙 | 직관을 길러주는 바둑 기보 | 신의 한 수 | 몬테카를로 트리 탐색 | 슬롯머신과 멀티암드 밴딧 | 알파고, 이렇게 복잡할 필요가 있었을까? | 알파고의 한계

16 실시간 인공 지능과 스타크래프트 봇
봇 만들기 | 스타크래프트와 인공 지능 | 게임 단순화하기 | 실용적인 스타크래프트 봇 | Open AI와 도타2 게임 | 스타크래프트 봇의 미래

끝내기 기계는 지능을 가질 수 있을까?

17 50년 후, 또는 그 후
적기를 맞은 인공 지능 개발 | 성공 사례로 배우기 | 데이터의 광범위한 활용 | 우리는 어디로 가는가?

댓글